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A new method is developed for evaluating the integral over the tirst Brillouin Zone 
of a face-centered cubic lattice. In this method the density of the points at which the 
value of the integrand is sampled increases towards the center of the zone, which makes 
the method particularly useful for the prediction of low-temperature thermodynamic 
properties. We use the new method and two other integration methods to evaluate the 
Debye specific heat formula, and compare the results to determine the relative usefulness 
of the different methods. We also discuss the application of the new method to the first 
Brillouin zone of the simple cubic lattice. 

1. INTRODUCTION 

Theoretical expressions for many of the observable properties of crystals involve 
one or more integrals of some function of the wave vector k over the region of 
reciprocal space known as the first Brillouin Zone (BZ). Such integrals are often 
obtained by considering a sample crystal of volume V and taking the limit I/ -+ co 
to obtain results that are independent of the sample size. For finite V, one obtains a 
sum over a uniformly distributed set of points, which in the limit V-t co trans- 
forms to an integral according to the prescription 

(8r3/V) c + J’,, d3k. 
k 
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The integrals in the theoretical expressions for such thermodynamic properties 
as the specific heat CV and the macroscopic Gruneisen function y(T) have 
integrands that at temperatures well below the Debye temperature are essentially 
zero except near the center of the BZ and that at temperatures well above the 
Debye temperature are of roughly the same order of magnitude everywhere within 
the BZ. Consequently, for an integration formula to be efficient at both low and 
high temperatures, the density of the points at which the integrand is sampled must 
increase towards the zone center, so that the integrand is sampled at a sufficient 
number of points to give accurate results at low temperatures without increasing 
the total sampling beyond what is necessary to give accurate results at high tem- 
peratures. An integration formula with a density of sampling points that increases 
towards the zone center can, of course, be helpful in the study of other than just 
thermodynamic properties. 

Three different methods for obtaining integration formulas are considered. In 
Section 2 we review the commonly used uniform mesh method (UMM), which was 
described by Kellermann [l] in his classic paper on sodium chloride. This method 
samples the value of the integrand at a uniformly distributed set of points in the 
irreducible l/48-th of the BZ. In Section 3 we introduce a new method, the con- 
centric region method (CRM), which is an extension of the UMM. In the CRM the 
BZ is divided into a number of distinct concentric regions, each of which has the 
shape of a scaled-down BZ. The sampling density is kept uniform within each 
region but is changed from region to region to produce the desired increase in the 
sampling density towards the zone center. Finally, in Section 4 we discuss a 
Gaussian method (GM), which was introduced by Boyer and Hardy [2] to facilitate 
the calculation of the strain field around a point defect. This method also has a 
sampling density that increases towards the zone center. All three of these methods 
are designed for integrating smooth functions of k, such as those that occur in the 
calculation of thermodynamic properties. They are not well suited for integrating 
functions that possess discontinuities or singularities at points other than at k = 0. 
In particular, they are not well suited for evaluating the integral of the Dirac delta 
function S(w - wk), which yields the density of states function g(w). 

Specifically, we are concerned here with the evaluation of integrals of the form 

(F) = (u&r3) I, d3k F(k). (2) 

We are primarily interested in the case where the integration is over the BZ of the 
face-centered cubic (fee) lattice, which is diagrammed in Fig. 1. We do, however, 
briefly consider the case where the integration is over the BZ of the simple cubic (SC) 
lattice in Section 3. The normalization factor (u,/%r3) in Eq. (2) is such that, if 
F(k) = C for all k, then (F) = C. Here, V, is the volume of the primitive cell of 
the lattice. For the fee lattice a, = (a3/4), where a is the lattice constant. For the 
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FIG. 1. The first Brillouin zone of the fee lattice. The shaded part is the irreducible l/48 of 
the zone. The numbers in square brackets give the direction of the normal to the surface indicated. 

NaCl structure, a = 2r, where r is the distance between nearest neighbors. Since 
we are concerned with cubic lattices, we consider only integrands F(k) that possess 
the cubic symmetry properties 

W, , k, , k,) = F&v > k, , kz) = F(k, , k, , k,) 

= FC-k, , k, , k,) = F(k, , 4, , k,) = J’(k, , k, , -4) (3) 

and the periodicity 

FOC + G> = F(k), (4) 

where k = (k, , k, , k,), and G is any reciprocal lattice vector. Because of Eq. (3), 
the integral in Eq. (2) is equal to 48 times the integral over the irreducible l/48-th 
of the BZ. 

It is convenient to introduce the dimensionless variable q defined by 

q = (a/27r) k. (5) 

With this, Eq. (2) reduces to 

(F) = (l/Q*) j-,* d% F*(q), (6) 
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where 1;2* is the q-space volume of the BZ. The star is used to designate the q-space 
analogues of quantities whose basic definitions are given in terms of k-space. In 
particular, F*(q) = P’(2&2) = F(k). The q-space analogue of the BZ of the fee 
lattice, which is labeled BZ*, is the region such that 

I qr I < 1, I qy I < 1, I qz I < 1, and I qe I + I qy I + I qg I 6 P/2), (7) 

where q = (qz , qy , q2). The volume of this region is Q* = 4. Our problem is to 
approximate the integral in Eq. (6) by a sum of the form 

09 = c w(q) F*(s)? (8) 
P 

where the sum is over a discrete set of sampling points q, each of which has a weight 
factor w(q) associated with it. Because of the factor (l/Q*) in Eq. (6), one has 

p+Gl) = 1. 

2. UNIFORM MESH METHOD (UMM) 

The basic UMM integration formula for the fee lattice is 

(F> = M-3 c’ [ mabcW - 4 ~((3~12) - a - b - 41 F*hab,), 
a,b,c 

where 

%bc = ( 42 3 qv 3 4x) = (I/M)@, 4 C), 

44 = 
1 

1, if x > 0, 
4, if x = 0, 
0, if x < 0, 

and 
m abc = 2Z’a9b~c)P(u, b, c), 

(9 

w9 

01) 

(12) 

(13) 

where Z(u, b, c) is the number of nonzero elements in the set (a, b, c) and P(u, b, c) 
is the number of distinct permutations of the set. The parameter M is a positive 
integer. The sum in Eq. (IO) is over those integer values of a, 6, and c such that: 

a, b, and c are either all even or all odd integers; Wa) 

M>u>b>c>O; (1W 

a + b + c < (3M/2). 044 
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Restriction (14a) leads to a bee lattice of sampling points in q-space, while restric- 
tions (14b) and (14c) assure that only points in the irreducible l/48-th of BZ are 
included in the sum. The function m&c accounts for the number of equivalent 
points in the BZ, i.e., the number of points at which the integrand has the same 
value as at qobC because of the symmetry properties (3) The product of unit step 
functions in Eq. (10) assigns a reduced weight to the sampling points that are on the 
surface of the BZ. 

When M = 10, 20, or 40, the number of distinct (i.e., inequivalent) points at 
which the integrand is sampled is 48, 262, or 1686, respectively (these numbers 
include the sampling point at the exact center of the BZ). The lo&Z number of 
points sampled in the BZ, independent of whether the points are equivalent or 
not, is 103, 203, or 403, respectively. 

Error Estimate 

In essence the UMM replaces the integration over the BZ by a sum of integrations 
over small “subzones,” each of which has the shape of a scaled-down BZ. The 
q-space volume of these subzones is 52, - * - @*/MS) = (4/Ms). The centers of 
these subzones form the bee lattice of sampling points defined by Eqs. (11) and 
(14a). (Remember, the BZ of the fee lattice has the same shape as the Wigner- 
Seitz cell of the bee lattice.) A subzone contains all parts of q-space closer to the 
sampling point at its center than to any other sampling point, so that each sampling 
point is at the geometric center (or center of mass) of the subzone associated with 
it. Thus, Eq. (6) is equivalent to 

m = (l/-Q*) =;, j,,, d3q F*(q), , > 0 (15) 

where each integral in the sum is over a different subzone. The subzone centered 
about the sampling point q&c is labeled SZS, . 

By expanding the q-dependence of the integrand for each subzone in a Taylor 
series of powers of (q - qabc) one obtains 

F*(q) = F*(%bc) + V,F*(%bc) * (q - %bc) 

06) 

where the subscripts i andj designate vector components in the x, y, or z direction. 
The substitution of this into Eq. (15) gives 
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where 

Equation (18) defines d, which has the same value for all subzones. aii is the 
Kronecker delta function. Since qabc is at the geometric center of the subzone, the 
integral over SZ$,, of (q - q&l is zero, which causes the contribution to Eq. (17) 
of the linear term in Eq. (16) to be zero. 

After full account is taken of the symmetries (3) and the periodicity (4), the first 
term on the right-hand side of Eq. (17) becomes the UMM integration formula, 
Eq. (10). The second term on the right-hand side of Eq. (17) gives an estimate of 
the error that results from the use of this integration formula. This error will be 
small if F*(q) is a smooth function of q. However, ifF(q) is not smooth, particularly 
if it contains discontinuities or singularities, the contribution to Eq. (17) of the 
second and other higher order terms on its right-hand side may be quite large, 
so that significant error could result from neglecting them. 

Some of the subzones near the surface of the BZ are truncated by the surface of 
the BZ. The reduced contributions of such subzones are accounted for in the UMM 
by the product of unit step functions in Eq. (10). This accounting procedure is 
possible in the UMM, since the part of any truncated subzone that is outside the 
region of integration is equivalent, because of Eqs. (3) and (4), to the part of some 
other truncated subzone that is within the BZ. 

The value of fl for the bee lattice of sampling points of the UMM is (19/96W). 
For comparison, consider the SC lattice of sampling points that would result from 
letting a, b, and c in Eq. (11) by any set of integers, and not just the sets that 
satisfy restriction (14a). Equations (17) and (18) would still be valid. However, the 
number of terms in the sum in Eq. (17) would be four times greater than when 
restriction (14a) is used, and the value of (L&/Q*) would be l/4 as large. The value 
of d would be (1/12M2) for the cube-shaped subzones that result. This is less than 
the value of d for the bee lattice of sampling points by a factor of (8/19) = 0.42. 
Consequently, the SC lattice of sampling points would reduce the error by a factor 
of 0.42 at the cost of increasing the number of sampling points by a factor of 4. This 
same reduction in error could be obtained with a bee lattice of sampling points by 
increasing the value of M used by approximately (19/8Y2 = 1.54, which would 
increase the number of sampling points by the slightly smallerfactorof (1 .54)3 = 3.66. 

3. CONCENTRIC REGION METHOD (CRM) 

/cc Brillouin Zone 

In the CRM the BZ is divided into N distinct concentric regions by surfaces that 
have the shape of the surface of a scaled-down BZ. Let the symbols R(O) with 
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a = 1, 2,..., and N designate the different regions. Let IF) designate the region 
between the surface of the BZ and the largest BZ-shaped dividing surface; let W 
designate the region between the inner surface of IV) and the next largest BZ- 
shaped dividing surface, etc. The surface separating R(O) from RcU+l) has linear 
dimensions that are scaled down from those of the surface of the BZ by a factor of 
(m/M)“, where m and M are positive integers and m < M. Thus, the dimensions 
of W+r) are less than those of IV) by a factor of m/M. A bee lattice of sampling 
points is used in each region. The distance between sampling points is reduced from 
region to region by the same factor as the dimension of the region, so that ail 
regions have the same number of sampling points (except the innermost region 
R(N)). The decrease in the dimensions of the regions with increasing (Y produces 
the desired increase in the sampling density towards the zone center. 

The basic CRM integration formula is 

where 

and 

q’$ = (q ac LT> q q ) = (mm-l Y, a I~“)(~> 6 4 WI 

wit\ = (m”-llM*)S mabcfabo , (20 

where CF& designates a sum over the sampling points in region IW, and the 
function mabc is given by Eq. (13). The function&,, gives the fraction of the volume 
of the subzone surrounding the point q$L that is within the region P). The weight 
factors wh”d, are such that 

c 
(dwtaao = (m~M)8'c4' Cl - (m/iWl (for 01 < N), (22) 

a,b,c 

c (A’) w;c’ = (m/~8(N-~) 

a,0 
(for 01 = N), (23) 

and 

Just as in the UMM, a subzone is the BZ-shaped region around each regularly 
placed sampling point that contains all parts of q-space closer to the sampling 
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point in question than to any other sampling point. However, some of the subzones 
are truncated by the surfaces of the regions R@). For example, consider 
the outermost region R(l). Its outer surface is made up of segments of the 
2 + 2 + 2 + 8 = 14 planes defined by the equal signs in Eq. (7); its inner surface 
is made up of segments of the 14 planes defined by I qr I = (m/M), J qg j = (m/M), 
1 qz 1 = (m/M), and ) qz j + I qr I + j qz I = (3m/2M). Some of the truncated 
subzones in W are intersected by only one of these 14 + 14 = 28 planes, while 
some are truncated by two of these planes. To assure that none of the subzones is 
truncated by more than 2 of these 28 planes, only values of m and M that are equal 
to 

4(integer) + 1 = 5,9, 13, 17,21... (25) 

are considered. One can show that, when m and A4 have these values, the “corners” 
(see point W in Fig. 1) of the outer and inner surfaces of the region are always 
coincident with a corner of one of the subzones. This eliminates the possibility of 
any subzone being truncated by three (or more) of these planes. 

The contribution to (F) of a truncated subzone is given by the integral of F*(q) 
over the part of the subzone that is within the region with which the subzone is 
associated. To best approximate this, the value of the integrand F*(q) is sampled at 
the point at the geometric center of the part of the subzone that is inside the region, 
and the weight is reduced from that of an untruncated subzone by the 
fraction faae . 

If an expansion similar to Eq. (17) were made of the integral over a region Rla), 
the location just specified for the sampling points at the surface of the region would 
be such that the contribution to the integral of the first derivative terms in the 
Taylor series would be identically zero for the surface subzones, as well as for the 
interior subzones. In this way, the error that results from the use of CRM integra- 
tion formula (18) is minimized. 

There are two basic types of regions: Type I and Type II. Regions R(l) through 
RtN-l) are of Type I and have the shape of a scaled-down BZ with a smaller BZ- 
shaped region absent from the center. Region RcN) is of Type II, it has the shape 
of a scaled down BZ and includes the region at its center. 

The different kinds of subzones that exist in a Type I region are given below, 
along with the value of the fraction&, and the values of a, b, and c that determine 
the sampling points q$b . (Only sampling points from l/48-th of each region are 
needed, since the function maac accounts for the contributions of the subzones in 
the other parts of the region.) 

Ia. The subzones truncated by the outer [l, 0, 0] surface of the region have 
faao = UP) and 

(a, b, c) = (M - (35/96), b, 4, (264 
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where 

b + c < (1/2)(M - 1) and b>c>O; (26b) 

b and c are odd integers. 
Ib. The subzones truncated by the outer [1, 0, 0] and [I, 1, l] surfaces have 

he = (7/16) and 

where 

(a, b, c) = (M - (1 l/28), b’ - (23/336), c’ - (23/336)), CW 

b’ + c’ = (1/2)(M - 1) and b’ >, c’ > 0; t27b) 

b’ and c’ are odd integers. 
Ic. The subzones with centers inside W) that are truncated by the outer [l, 1, 1] 

surface have faac = (17/24) and 

(a, 6, c) = (a’ - (35/272), b’ - (35/272), c’ - (35/272)), (284 

a’ + b’ + c’ = (3M/2) - (l/2) 

a’, b’, and c’ are odd integers. 

and M - 1 > a’ > b’ > c’ > 0; (28b) 

Id. The subzones with centers outside R w that are truncated by the outer 
[I, 1, I] surface have fabc = (7/24) and 

(a, b, c) = (a’ - (5/16), b’ - (5/16), c’ - (5/16)), (294 

where 

a’ + b’ + c’ = (3M/2) + (l/2) and M > a’ > b’ > c’ > 0; (29b) 

a’, b’, and C’ are even integers. 
Ie. The subzones truncated by the outer [I, I, l] and [l, 1, -I] surfaces have 

fabc = (l/8) and 

where 

(a, b, c) = (a’ - (23/48), b’ - (23/48), 0) VW 

a’ + b’ = (3M/2) + (l/2) 

a’ and b’ are even integers. 

and M > a’ > b’ > (1/2)(M + 1); POW 
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If. The subzones contained entirely within R(“) have faac = 1. The numbers 
a, b, and c for these subzones take on all integer values such that:* 

a, b, and c are either all even or all odd integers; (314 

a>b>c>O; @lb) 

a + b + c < (3/2)(M - 1); (31c) 

I 
either M - 1 3 a 2 m + 1, 
or m > a 3 (1/2)(m + 1) and a + b + c 3 (3/2)(m + 1). (314 

Ig. The subzones truncated by the inner [l, 0, 0] surface of the region have 
faae = UP) and 

(a, 4 4 = (m + W/96), b, 4, W) 
where 

b + c < (1/2)(m - 1) and b > c > 0; WW 

b and c are odd integers. 
Ih. The subzones truncated by the inner [l, 0, 0] and [I, 1, 1] surfaces have 

Lao = (9/16) and 

where 

(a, b, c) = (m + (1 l/36), b’ + (23/432), c’ + (23/432)), (334 

b’ + c’ = (1/2)(m - 1) and b’ 3 c’ > 0; 

b’ and c’ are odd integers. 

W) 

Ii. The subzones with centers outside R fa) that are truncated by the inner 
[l, 1, 1 ] surface have faac = (7/24) and 

(a, b, c) = (a’ + (5/l@, b’ + (5/l@, c’ + (5/l@), (344 

where 

a’ + b’ + c’ = (3m/2) - (l/2) and m - 1 > a’ > b’ > c’ > 0; PW 

a’, b’, and c’ are odd integers. 
Ij. The subzones with centers inside R Ia) that are truncated by the inner [l , 1, l] 

surface have fabc = (17/24) and 

(a, 6, c) = (a’ + (35/272), b’ + (35/272), c’ + (35/272)), (354 

1 Restriction (31d) can also be stated as follows: M - 1 > u > (1/2)(m f 1) and, if a < m, 
exclude values of a, 6, and c for which a + 6 + c < (3/2)(m + I). 
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a’ + b’ + c’ = (3m/2) + (l/2) 

a’, b’, and c’ are even integers. 

and m > a’ 3 b’ >, c’ > 0; (W 

Ik. The subzones truncated by the inner [l, 1, l] and [ 1, 1, - l] surfaces have 
fabo = (7P) and 

where 

(a, b, c) = (a’ + (23/336), b’ + (23/336), 0), Wa) 

a’ + b’ = (3m/2) + (l/2) and m > a’ > b’ > (1/2)(m + 1); (33 

a’ and b’ are even integers. 
The different kinds of subzones that exist in a Type II region, and the values of 

faaa and of a, b, and c are given below: 

IIa through IIe. These are the same as Ia through Ie, respectively. 
IIf. The subzones contained entirely within Sal have faac = 1. The quantities 

a, b, and c for these subzones have all integer values such that: 

a, b, and c are either all even or all odd integers; (374 

a>b>c>O; Wb) 

Q + b + c B (3/2x44 - 1); (374 

M-lZa>O. W) 

IIg. The subzone at the center can be accounted for with the following values 
for a, b, and c and for the product mabc fabc : 

(a, b, c) = (0.2,0.0,0.0), mabcfabc = (10/35); (W 

(a, b, c) = (1/2)ria (0.2,0.2, O.O), %befbbc = W/35); Wb) 

(a, b, c) = (1/3)‘/2 (0.2,0.2, 0.2), %bcfabc = (9/35)- (3W 

It is often difficult to determine the value of the integrands at the point q = 0, 
which is at the exact center of the BZ. Because of this, the contribution to (F) of 
the subzone surrounding q = 0 has been determined by averaging the value of 
the integrand over the surface of a small sphere centered at q = 0. The three 
sampling points given in IIg, which determine the contribution of 
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TABLE I 

Values of u, b, and c and of m.,b, and fobc for regions of Type I when A4 = i 7 and m = 9 

(The 110 distinct sets of values for a, b, and c for subzones of kind lff are not given, since they 
are easily determined with the algorithm (31a)-(31d) given in the text.) 

Kind of 
subzone 

Ia 

Ib 

IC 

Id 

a > b , c mabe f .sbF 

16 + (61/96) , 1 , 1 24 112 
16 + (61/96) , 3 ) 1 48 112 
16 + (61/96) , 3 , 3 24 112 
16 + (61/96) , 5 > 1 48 w 

16 + (17/28) , 4 + (313/336), 2 + (313/336) 48 V/W 
16 + (17/28) , 6 -+ (313/336), 0 + (313/336) 48 (7/16) 

8 + (237/272), 8 + (237/272), 6 + (2371272) 24 (17/W 
10 + (237/272), 6 + (237/272), 6 + (2371272) 24 W/W 
10 + (237/272), 8 + (237/272), 4 + (2371272) 48 (17/W 
10 + (237/272), 10 + (237/272), 2 + (237/272) 24 (17/W 
12 + (237/272), 6 + (237/272), 4 + (237/272) 48 (17/W 
12 + (237/272), 8 + (237/272), 2 + (237/272) 48 (17/W 
12 + (237/272), 10 + (237/272), 0 + (237/272) 48 (17124) 
14 + (237/272), 4 + (237/272), 4 + (2371272) 24 (17/W 
14 + (237/272), 6 + (237/272), 2 + (237/272) 48 (17/W 
14 + (237/272), 8 + (237/272), 0 + (237/272) 48 (17/W 

9 + (11/l@ , 7 + (lUl6) , 7 + (11/16) 24 (7/W 
9 + (11/l@ , 9 + (11/16) > 5 + (11116) 24 U/24) 

11 + (lU16) > 7 + (1106) , 5 + (11/16) 48 (7124) 
11 + (1106) , 9 + (11/16) , 3 + (11/16) 48 V/W 
11 + (11/16) > 11 + (11/16) , 1 f (11/16) 24 0.124 
13 + (11/16) , 5 + (11/l@ > 5 f (11/W 24 U/24 
13 + (11/16) > 7 + (lUl6) > 3 + (11/16) 48 V/W 
13 + (11/16) , 9 + (11/16) , 1 + (11/W 48 V/W 
15 + (11/16) , 5 + (11/16) , 3 + (11/16) 48 V/W 
15 + (lUl6) , 7 + (11/16) , 1 + (11/16) 48 U/W 

_____- 

Table continued 
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TABLE I (continued) 
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Kind of 
subzone 

Ie 

a , b , C mob f (IbC 

13 + (25/48) , 11 + (25/48) , 0 24 (l/8) 
15 + (25148) , 9 + (25/48) , 0 24 (l/8) 

If - - - - 1 

Ig 9 + (35/g@ , 1 , 1 24 l/2 

Ih 9 + (11/36) , 3 + (231432) , 1 + (23/432) 48 @/16) 

Ii 5 + (5/16) > 5 + (5/16) , 3 + (5/16) 24 U/24 

7 + (5/16) , 3 + (S/16) , 3 + (5/16) 24 (7/24) 
7 + (5/16) , 5 + (5/16) , 1 + (5/16) 48 (7/w 

Jj 6 f (W272) , 4 -I- (351272) , 4 + (351272) 24 (17/W 
6 + (35/272) , 6 + W272) > 2 + (35/272) 24 (17/W 
8 + W/272) , 4 + (35/272) , 2 + (35/272) 48 (17124) 

Ik 8 + W/336) , 6 + (23/336) , 0 24 (7/8) 

radius of this sphere. Note that the sum of the effective values for the product 
maabcfabe given in Eq. (38) is 1, as it must be, since mabc = 1 for a = b = c = 0 and 
faao = 1 for an untruncated subzone. 

When values for M and m are being chosen, a compromise must be made 
between the conflicting demands for accuracy and for computational efficiency. A 
choice that we have found to be useful is M = 17 and m = 9. For reference, the 
VdUeS Of a, b, and c, Ofm,gc, and of fabc for Type I regions when M = 17 and 
m = 9 are given in Table I. When M = 17 and m = 9, there are 147 distinct 
sampling points in a Type I region and 179 distinct sampling points in a Type II 
region, so that the total number of distinct sampling points when N regions are 
used is 147N-1 + 179. 

SC Brillouin Zone 

With a little modification, the CRM for evaluating integrals over the BZ of the 
fee lattice can be extended so that it is also useful for evaluating integrals over the 
cubic BZ of the SC lattice. First, the relationship between the dimensionless variable 
q and the wave vector k must be redefined so that the q-space analogue of 
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the surface of the cubic BZ of the SC lattice is made up of segments of the six planes 
] qe I = 1, I qu 1 = 1, and I qz I = 1. This q-space cube is then divided into several 
concentric regions by surfaces that have the shape of the surface of the BZ of the fee 
lattice. Let R(l) designate the region between the q-space analog of the surface of 
the BZ and the largest dividing surface; let R w designate the region between the 
inner surface of R(l) and the next largest dividing surface, etc. The resulting integra- 
tion formula has exactly the form of Eq. (19) and the points qb”d, are given by 
Eq. (20). However, Eq. (21) for wh”d, must be altered by the insertion of a factor of 
l/2 on its right-hand side to account for the fact that the q-space volume of the 
BZ of the SC lattice is 52” = 8, not 4 as with the fee lattice. The only other important 
change is that the outermost region R(l) is of a new type, which we will call Type III. 
Regions Rt2) through RCN-l) are of Type I, and RcN) is of Type II. 

The different kinds of subzones that exist in a Type III region and the values of 
fabe and of a, b, and c are given below. 

IIIa. The subzones contained entirely within the region and those truncated by 
the outer surface of the region have 

faao = u(M - a) u(M - b) u(M - c), (3% 

where the unit step function U(X) is defined by Eq. (12). The numbers a, b, and c 
for these subzones take on all integer values such that: 

a, b, and c are either all even or all odd integers: WW 

a>b>c>O; VW 

I 

eitherM>a>m+ 1, 
or m > a 3 (1/2)(m + 1) and a + b + c > (3/2)(m + 1). w@ 

IIIb through IIIf. These are the same as Ig through Ik, respectively. 
Since only the outermost region R(l) can be of Type III, a Type III region always 

has its outer surface coincident with the surface of the BZ, so that the exterior part 
of any subzone that is truncated by the outer surface of the region is equivalent 
because of Eqs. (3) and (4) to the part of the same other truncated subzone that is 
inside the BZ. Because of this, the reduced contributions of these truncated sub- 
zones can be accounted for by the values offabc specified by Eq. (39). 

4. GAUSSIAN METHOD (GM) 

The Gaussian method is based on Gauss’ formula [4] 

(41) 
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Here, the abscissa xi is the i-th root of the Legendre polynomial P,(X), and the 
weight factors are wi = 2/(1 - X# [Pn’(xt)12. When the positive integer n is even, 
n/2 of the abscissa are positive, and each of the remaining abscissas is equal to the 
negative of one of the positive abscissas. Both f 1 xi 1 have the same weight factor. 
The abscissas are most dense near the limits of the interval of integration. 

To apply Eq. (41) to the three-dimensional integration over the BZ of the fee 
lattice, one extends the region of integration to include the entire cube contained 
within the six planes 1 q2 1 = 1, 1 qy ) = 1, and 1 qz 1 = 1. The periodicity (4) is 
used to determine the values of integrand in the part of this cube that is outside the 
first BZ. To cause the maximum in the sampling density to be at the zone center 
and at the corners of our cube, which are equivalent points, one applies Gauss’ 
formula to the part of the cube in which each of the components qI, qv, and qE is 
positive. (This part of the cube is also a cube.) Then, using the symmetry property 
(3) and neglecting the remainder term R, , one obtains the basic GM integration 
formula: 

(F) = (l/4) i i i [u((3/2) - qr - 93 - qt) ~;zwwd F*hid, 
i=l j=slZ-1 

where 

6, if i > j > I, 
mkjl = 3, if i>j=l or i=j>l, 

1, if i = j = 1, 

and 

where 

4% = U/2)(1 + Xi), 

(42) 

(43) 

(44 

(45) 

and similarly for qj and qr . The xi and wi are the abscissas and weight factors in 
Eq. (41), and the subscripts are assumed to be such that xt < xifl . The unit step 
function u[(3/2) - qi - qj - qt] accounts for the fact that, for each point qiii 
outside the first BZ, there is one point qipfpr’ inside the first BZ where the integrand 
has the same value, and vice-versa. By considering only even values of n, one can 
avoid the possibility of the argument of the unit step function being zero. The 
factor mij1 and the indicated limits on the summations over i, j, and I account for 
the equivalence of sampling points that results from the symmetry properties (3). 

For n = even, the number of distinct sampling points in the GM is equal to 
(1/12)(n3 + 3n” + 2n). For IZ = 12, n = 16, and n = 20, the numbers of distinct 
sampling points are 182,408, and 770, respectively. 
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5. COMPARISON OF DIFFERENT METHODS 

To compare the different methods for evaluating integrals over the BZ of the fee 
lattice, we have evaluated the function 

where 

Q(e) = (3W)(C(WW, (46) 

and 
8 = (ak,/div) T, (48) 

where 0 is a generalized temperature, T is the absolute temperature, a is the lattice 
constant, kB is Boltzmann’s constant, fi is (Planck’s constant/2rr), and u is the 
velocity of sound. C(0) is proportional to the contribution of a single branch of the 
phonon disparsion relation to the specific heat in the Debye approximation, 

The integrand in Eq. (47) possesses all of the properties that make the calculation 
of low-temperature values for CV and y(T) difficult. In particular, the i&grand 
tends to zero as (I q (/0) - cc, and it tends to one as (I q i/0) -+ 0. It is equal to l/2 
when (I q I/e> = 1.5. At high temperatures (0 > 1.5), the integrand is essentially 
constant over the entire BZ, while at low temperatures (0 < 1) the major contribu- 
tion to the integral is from the region of q-space near q = 0. As 6’ decreases, C(e) 
becomes proportional to @, so that, for 0 < 0.1, 

1 > Q(B) > 0.9997. (49) 

By comparing the value of Q(e) obtained numerically with this analytic result, we 
can determine the accuracy of the integration method used. 

The values of Q(e) obtained with the different numerical methods for evaluating 
the integral over the BZ are given in Fig. 2. The numbers in parenthesis indicate 
the number of distinct points at which the value of the integrand is sampled. For 
example, these numbers give the number of different values of q at which the 
dynamical matrix would have to be diagonalized in a calculation of the specific 
heat CV based on the complete phonon frequency spectrum wkS . (Here, s is a 
polarization index; for an alkali halide, s = 1,2,..., 6.) 

The difference between the two UMM results with M = 40 in Fig. 2 is that the 
contribution of the sampling point at the exact center of the BZ (i.e., the point 
q = 0) is included in the result obtained with 1686 distinct sampling points, while 
it is omitted in the result obtained with 1685 points. The large difference between 
these two UMM results clearly illustrates the special importance of the subzone at 
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0.98 t 
M= 17 

-I 

Generalized tempemture - 0 

FIG. 2. The function Q(6) as determined with the uniform mesh method (UMM), the con- 
centric region method (CRM), and the Gaussian method (GM). The dots designate calculated 
values, and the numbers in parentheses give the number of distinct sampling points used in the 
calculation. Note that 0 - (r/S,), where BI, is the Debye temperature. 

the center of the BZ. The same type of sensitivity to the contribution of the subzone 
at the center also exists in the CRM. In fact, for both the UMM and CRM the 
lowest value of 9 at which accurate results can be obtained is directly proportional 
to the linear dimensions of the subzone at the center of the BZ. 

6. DISCUSSION 

The advantage of increasing the density of sampling points towards the zone 
center is obvious from Fig. 2. For example, the UMM calculation involving 1686 
distinct sampling points is little better at low temperatures than the CRM calcula- 
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tion involving only 326 points. Of course, the UMM calculation in principle gives 
more accurate results at high temperatures, but the increased accuracy is of no 
practical value. 

Figure 2 also reveals that for N > 3 the CRM gives reliable low-temperature 
results with slightly fewer distinct sampling points than the GM. Nevertheless, the 
main advantage of the CRM over the GM is its greater flexibility. Once one has 
written a computer routine to evaluate integrals with the CRM integration 
formula,2 one can alter the distribution of the sampling points within the BZ and/or 
the total number of sampling points simply by changing the values of the param- 
eters N, A4, and M. This flexibility can be useful both for verifying that the results 
obtained are not sensitive to the sampling used and for adjusting the sampling to 
obtain the greatest possible computational efficiency. 

T (‘K) 

FIG. 3. The macroscopic Griineisen function r(T) for KRr as calculated with the CRM with 
different numbers of regions N and with M = 17 and m = 9. 

*Note to programmer: Despite the several different kinds of truncated subzones listed in 
Section 3, the CRM integration formula is not difficult to program. A convenient way to check 
a program is to verify that Eqs. (22), (23), and (24) are satisfied and that the results given in Table I 
are reproduced when M = I7 and m = 9. It must be remembered that the formulas in Section 3 
are valid only when m and M are two of the integers given by Eq. (25). 
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As an example of an application of the CRM, we show in Fig. 3 the results of a 
calculation of the macroscopic Griineisen function y(T) for KBr, where 

Here C,,(T) is the heat capacity of the normal mode with wave vector k and 
polarization index s, and yks is the associated mode-Grtineisen parameter. The 
details of this calculation are given in a recent article by Hardy and Karo [S]. 
Heretofore, there had been some doubt concerning whether or not the theoretical 
values for y(T) passed through a minimum at low temperatures [6]. By using the 
CRM we were able to show unambiguously that a pronounced minimum in y(T) is 
predicted by the anharmonic deformation dipole model (results shown in Fig. 3), 
but that no minimum is predicted by the rigid ion model (result not shown 
here). 

Because of the parameter Yks , the integrand in the numerator of Eq. (50) does 
not have a unique limiting value as k -+ 0, but has different limiting values in 
different directions. This is the type of singular behavior at the center of the BZ 
that led us in Section 3 to specify the use of the average value given by (38) when 
determining the contribution to (F) of the subzone at the center of the BZ. The 
rather good low-temperature approximation to y(T) that was obtained with only 
one region (see the N = 1 curve in Fig. 3) is due, to a large extent, to the use of this 
method for determining the contribution of the subzone at the center. Nevertheless, 
this method, which works well when calculating y(T) and CV , may not be the best 
method when other properties are being calculated. The method of estimating the 
contribution of the subzone at the center should be adjusted to account for the 
particular properties near q = 0 of the integrands involved in the problem being 
considered. 

A comparison of Figs. 2 and 3 suggests that the information in Fig. 2 can be 
roughly related to the calculation of the low-temperature properties of real crystals 
by identifying the parameter 0 with the ratio (r/8,), where do is the Debye tempera- 
ture of the crystal being considered. (The value of 0, for KBr is 174°K [7].) 

Finally, it should be noted that the type of problem for which the CRM integra- 
tion formula is useful is quite different from the type of problem discussed by Gilat 
and collaborators [S]. They have been primarily concerned with the problem of 
calculating properties such as the density of states function g(w) for which the CRM 
is unsuited. Usually, the contributions of the very long-wave-length normal modes 
to properties such as g(w) are of relatively little interest. In contrast the CRM is 
specifically designed for calculating properties for which the contributions of these 
normal modes are of special interest. 

5W3/4-11 
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